4.5 Article

A Toxoplasma gondii mutant highlights the importance of translational regulation in the apicoplast during animal infection

Journal

MOLECULAR MICROBIOLOGY
Volume 82, Issue 5, Pages 1204-1216

Publisher

WILEY
DOI: 10.1111/j.1365-2958.2011.07879.x

Keywords

-

Funding

  1. American Heart Association [0840059N]
  2. NIH National Research Service [T32 AI007414]

Ask authors/readers for more resources

Toxoplasma gondii is an obligate intracellular parasite of all warm-blooded animals. We previously described a forward genetic screen to identify T. gondii mutants defective in the establishment of a chronic infection. One of the mutants isolated was disrupted in the 3' untranslated region (3'UTR) of an orthologue of bacterial translation elongation factor G (EFG). The mutant does not have a growth defect in tissue culture. Genetic complementation of this mutant with the genomic locus of TgEFG restores virulence in an acute infection mouse model. Epitope tagged TgEFG localized to the apicoplast, via a non-canonical targeting signal, where it functions as an elongation factor for translation in the apicoplast. Comparisons of TgEFG expression constructs with wild-type or mutant 3'UTRs showed that a wild-type 3'UTR is necessary for translation of TgEFG. In tissue culture, the TgEFG transcript is equally abundant in wild-type and mutant parasites; however, during an animal infection, the TgEFG transcript is increased more than threefold in the mutant. These results highlight that in tissue culture, translation in the apicoplast can be diminished, but during an animal infection, translation in the apicoplast must be fully functional.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available