4.5 Editorial Material

Cation/proton antiporter complements of bacteria: why so large and diverse?

Journal

MOLECULAR MICROBIOLOGY
Volume 74, Issue 2, Pages 257-260

Publisher

WILEY
DOI: 10.1111/j.1365-2958.2009.06842.x

Keywords

-

Funding

  1. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM028454] Funding Source: NIH RePORTER
  2. NIGMS NIH HHS [R01 GM028454, GM28454, R01 GM028454-25] Funding Source: Medline

Ask authors/readers for more resources

P>Most bacterial genomes have five to nine distinct genes predicted to encode transporters that exchange cytoplasmic Na+ and/or K+ for H+ from outside the cell, i.e. monovalent cation/proton antiporters. By contrast, pathogens that live primarily inside host cells usually possess zero to one such antiporter while other stress-exposed bacteria exhibit even higher numbers. The monovalent cation/proton antiporters encoded by these diverse genes fall into at least eight different transporter protein families based on sequence similarity. They enable bacteria to meet challenges of high or fluctuating pH, salt, temperature or osmolarity, but we lack explanations for why so many antiporters are needed and for the value added by specific antiporter types in specific settings. In this issue of Molecular Microbiology, analyses of the pH dependence of cytoplasmic [Na+], [K+], pH and transmembrane electrical potential in the 'poly extremophile' Natranaerobius thermophilus are the context for assessment of the catalytic properties of 12 predicted monovalent cation/proton antiporters in the genome of this thermophilic haloalkaliphile. The results provide a profile of adaptations of the poly extremophilic anaerobe, including a proposed role of cytoplasmic buffering capacity. They also provide new perspectives on two large monovalent cation/proton antiporter families, the NhaC and the cation/proton antiporter-3 antiporter families.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available