4.5 Article

Dimerization of the quorum-sensing transcription factor TraR enhances resistance to cytoplasmic proteolysis

Journal

MOLECULAR MICROBIOLOGY
Volume 73, Issue 1, Pages 32-42

Publisher

WILEY
DOI: 10.1111/j.1365-2958.2009.06730.x

Keywords

-

Funding

  1. National Institute of General Medical Sciences [GM41892]
  2. Brazilian government
  3. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (Capes)

Ask authors/readers for more resources

P>TraR is a LuxR-type quorum-sensing protein encoded by the tumour-inducing plasmid of Agrobacterium tumefaciens. TraR requires the pheromone N-3-oxooctanoyl-l-homoserine lactone (OOHL) for biological activity, and is dimeric both in solution and when bound to DNA. Dimerization is mediated primarily by two alpha-helices, one in the N-terminal OOHL binding domain, and the other in the C-terminal DNA binding domain. Each of these helices forms a parallel coiled coil with the identical helix of the opposite subunit. We have previously shown that OOHL is essential for resistance to proteolysis, and here we asked whether dimerization is also required for protease resistance. We constructed a series of site-directed mutations at the dimer interface, and tested these mutants for activity in vivo. Alteration of residues A149, A150, A153, A222 and I229 completely abolished activity, while alteration of three other residues also caused significant defects. All mutants were tested for dimerization as well as for specific DNA binding. The cellular abundance of these proteins in A. tumefaciens was measured using Western immunoblots and OOHL sequestration, while the half-life was measured by pulse-chase radiolabelling. We found a correlation between defects in in vivo activity, in vitro dimerization, DNA binding and protein half-life. We conclude that dimerization of TraR enhances resistance to cellular proteases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available