4.5 Article

KOPS-guided DNA translocation by FtsK safeguards Escherichia coli chromosome segregation

Journal

MOLECULAR MICROBIOLOGY
Volume 71, Issue 4, Pages 1031-1042

Publisher

WILEY
DOI: 10.1111/j.1365-2958.2008.06586.x

Keywords

-

Funding

  1. Wellcome Trust (Oxford)
  2. CNRS
  3. Agence Nationale pour la Recherche and University Paul Sabatier of Toulouse (Toulouse)
  4. Oxford University Clarendon Postgraduate Award

Ask authors/readers for more resources

The septum-located DNA translocase, FtsK, acts to co-ordinate the late steps of Escherichia coli chromosome segregation with cell division. The FtsK gamma regulatory subdomain interacts with 8 bp KOPS DNA sequences, which are oriented from the replication origin to the terminus region (ter) in each arm of the chromosome. This interaction directs FtsK translocation towards ter where the final chromosome unlinking by decatenation and chromosome dimer resolution occurs. Chromosome dimer resolution requires FtsK translocation along DNA and its interaction with the XerCD recombinase bound to the recombination site, dif, located within ter. The frequency of chromosome dimer formation is similar to 15% per generation in wild-type cells. Here we characterize FtsK alleles that no longer recognize KOPS, yet are proficient for translocation and chromosome dimer resolution. Non-directed FtsK translocation leads to a small reduction in fitness in otherwise normal cell populations, as a consequence of similar to 70% of chromosome dimers being resolved to monomers. More serious consequences arise when chromosome dimer formation is increased, or their resolution efficiency is impaired because of defects in chromosome organization and processing. For example, when Cre-loxP recombination replaces XerCD-dif recombination in dimer resolution, when functional MukBEF is absent, or when replication terminates away from ter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available