4.5 Article

A novel mechanism for translation initiation operates in haloarchaea

Journal

MOLECULAR MICROBIOLOGY
Volume 71, Issue 6, Pages 1451-1463

Publisher

WILEY
DOI: 10.1111/j.1365-2958.2009.06615.x

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft [SFB579]

Ask authors/readers for more resources

Four different mechanisms for translation initiation are known, i.e. one prokaryotic mechanism involving a Shine-Dalgarno sequence, two eukaryotic mechanisms relying on ribosomal scanning or internal ribosomal entry sites, and one mechanism acting on leaderless transcripts. Recently it was reported that the majority of haloarchaeal transcripts is leaderless and that most leadered transcripts are devoid of a Shine-Dalgarno sequence, excluding the operation of a 'bacterial-like' initiation mechanism. Therefore, the current study concentrated on elucidating whether a 'eukaryotic-like' scanning mechanism might operate instead. GUG and UUG were efficiently used as start codons on leadered transcripts in vivo, in contrast to initiation on leaderless transcripts (and leadered eukaryotic transcripts). Deleted versions of the 5'-UTR initiated translation very inefficiently. Introduction of additional upstream AUGs did not influence the initiation efficiency at internal start codons. An additional in-frame AUG at the 5'-end led to the simultaneous usage of two start sites on the same message. A stable stem-loop structure at the 5'-end inhibited only initiation at the first AUG, but did not influence usage of the internal AUG. Taken together, operation of a scanning mechanism was excluded and the results indicate that a novel mechanism for translation initiation operates at least in haloarchaea.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available