4.5 Article

A new Vibrio cholerae sRNA modulates colonization and affects release of outer membrane vesicles

Journal

MOLECULAR MICROBIOLOGY
Volume 70, Issue 1, Pages 100-111

Publisher

WILEY
DOI: 10.1111/j.1365-2958.2008.06392.x

Keywords

-

Funding

  1. Umea University
  2. European Virtual Institute for Functional Genomics of Bacterial Pathogens [CEE LSHB-CT-2005- 512061]

Ask authors/readers for more resources

We discovered a new small non-coding RNA (sRNA) gene, vrrA of Vibrio cholerae O1 strain A1552. A vrrA mutant overproduces OmpA porin, and we demonstrate that the 140 nt VrrA RNA represses ompA translation by base-pairing with the 5' region of the mRNA. The RNA chaperone Hfq is not stringently required for VrrA action, but expression of the vrrA gene requires the membrane stress sigma factor, sigma(E), suggesting that VrrA acts on ompA in response to periplasmic protein folding stress. We also observed that OmpA levels inversely correlated with the number of outer membrane vesicles (OMVs), and that VrrA increased OMV production comparable to loss of OmpA. VrrA is the first sRNA known to control OMV formation. Moreover, a vrrA mutant showed a fivefold increased ability to colonize the intestines of infant mice as compared with the wild type. There was increased expression of the main colonization factor of V. cholerae, the toxin co-regulated pili, in the vrrA mutant as monitored by immunoblot detection of the TcpA protein. VrrA overproduction caused a distinct reduction in the TcpA protein level. Our findings suggest that VrrA contributes to bacterial fitness in certain stressful environments, and modulates infection of the host intestinal tract.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available