4.5 Article

tRNA and protein methylase complexes mediate zymocin toxicity in yeast

Journal

MOLECULAR MICROBIOLOGY
Volume 69, Issue 5, Pages 1266-1277

Publisher

WILEY
DOI: 10.1111/j.1365-2958.2008.06358.x

Keywords

-

Ask authors/readers for more resources

Modification of Saccharomyces cerevisiae tRNA anticodons at the wobble uridine (U34) position is required for tRNA cleavage by the zymocin tRNase killer toxin from Kluyveromyces lactis. Hence, U34 modification defects including lack of the U34 tRNA methyltransferase Trm9 protect against tRNA cleavage and zymocin. Using zymocin as a tool, we have identified toxin-resistant mutations in TRM9 that are likely to affect the U34 methylation reaction. Most strikingly, C-terminal truncations in Trm9 abolish interaction with Trm112, a protein shown to individually purify with Lys9 and two more methylases, Trm11 and Mtq2. Downregulation of a GAL1-TRM112 allele protects against zymocin whereas LYS9, TRM11 and MTQ2 are dosage suppressors of zymocin. Based on immune precipitation studies, the latter scenario correlates with competition for Trm112 and in excess, some of these Trm112 partners interfere with formation of the toxin-relevant Trm9.Trm112 complex. In contrast to trm11 Delta or lys9 Delta cells, trm112 Delta and mtq2 Delta null mutants are zymocin resistant. In line with the identified role that methylation of Sup45 by Mtq2 has for translation termination by the release factor dimer Sup45.Sup35, we observe that SUP45 overexpression and sup45 mutants suppress zymocin. Intriguingly, this suppression correlates with upregulated levels of tRNA species targeted by zymocin's tRNase activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available