4.5 Article

Single amino acid substitutions in either YhjD or MsbA confer viability to 3-deoxy-D-manno-oct-2-ulosonic acid-depleted Escherichia coli

Journal

MOLECULAR MICROBIOLOGY
Volume 67, Issue 3, Pages 633-648

Publisher

WILEY
DOI: 10.1111/j.1365-2958.2007.06074.x

Keywords

-

Funding

  1. NIAID NIH HHS [AI-061531] Funding Source: Medline

Ask authors/readers for more resources

The Escherichia coli K-12 strain KPM22, defective in synthesis of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo), is viable with an outer membrane (OM) composed predominantly of lipid IVA, a precursor of lipopolysaccharide (LPS) biosynthesis that lacks any glycosylation. To sustain viability, the presence of a second-site suppressor was proposed for transport of lipid IVA from the inner membrane (IM), thus relieving toxic side-effects of lipid IVA accumulation and providing sufficient amounts of LPS precursors to support OM biogenesis. We now report the identification of an arginine to cysteine substitution at position 134 of the conserved IM protein YhjD in KPM22 that acts as a compensatory suppressor mutation of the lethal Delta Kdo phenotype. Further, the yhjD400 suppressor allele renders the LPS transporter MsbA dispensable for lipid IVA transmembrane trafficking. The independent derivation of a series of non-conditional KPM22-like mutants from the Kdo-dependent parent strain TCM15 revealed a second class of suppressor mutations localized to MsbA. Proline to serine substitutions at either residue 18 or 50 of MsbA relieved the Kdo growth dependence observed in the isogenic wild-type strain. The possible impact of these suppressor mutations on structure and function are discussed by means of a computationally derived threading model of MsbA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available