3.9 Article

The identification of novel, high affinity AQP9 inhibitors in an intracellular binding site

Journal

MOLECULAR MEMBRANE BIOLOGY
Volume 30, Issue 3, Pages 246-260

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.3109/09687688.2013.773095

Keywords

Aquaporin; small molecule inhibitor; molecular docking

Funding

  1. Lundbeck Foundation [R17A1742]
  2. Marie Curie Research Training Network [MRTN-CT-2006-035995]
  3. Nordic Research Grant for Water Imbalance Related Disorders
  4. European Drug Initiative on Channels and Transporters Grant (EDICT) [HEALTH-F4-2007-201924]
  5. Danish National Research Foundation

Ask authors/readers for more resources

Background: The involvement of aquaporin (AQP) water and small solute channels in the etiology of several diseases, including cancer, neuromyelitis optica and body fluid imbalance disorders, has been suggested previously. Furthermore, results obtained in a mouse model suggested that AQP9 function contributes to hyperglycemia in type-2 diabetes. In addition, the physiological role of several AQP family members remains poorly understood. Small molecule inhibitors of AQPs are therefore desirable to further study AQP physiological and pathophysiological functions. Methods: The binding of recently established AQP9 inhibitors to a homology model of AQP9 was investigated by molecular dynamics simulations and molecular docking. Putative inhibitor binding sites identified with this procedure were modified by site-directed mutagenesis. Active compounds were measured in a mammalian cell water permeability assay of mutated AQP9 isoforms and tested for changes in inhibitory effects. Controls: Three independent cell lines were established for each mutated AQP9 isoform and functionality of mutant isoforms was established. Principal findings: We have identified putative binding sites of recently established AQP9 inhibitors. This information facilitated successful identification of novel AQP9 inhibitors with low micromolar IC50 values in a cell based assay by in silico screening of a compound library targeting specifically this binding site. Significance: We have established a successful strategy for AQP small molecule inhibitor identification. AQP inhibitors may be relevant as experimental tools, to enhance our understanding of AQP function, and in the treatment of various diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available