4.5 Article

Resveratrol exerts an anti-apoptotic effect on human bronchial epithelial cells undergoing cigarette smoke exposure

Journal

MOLECULAR MEDICINE REPORTS
Volume 11, Issue 3, Pages 1752-1758

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/mmr.2014.2925

Keywords

chronic obstructive pulmonary disease; SIRT1; ORP150; apoptosis; resveratrol; endoplasmic reticulum stress

Funding

  1. National Natural Science Foundation of China [30971324]
  2. National Key Scientific & Technology Support Program: Collaborative Innovation of Clinical Research for Chronic Obstructive Pulmonary Disease and Lung Cancer [2013BAI09B09]

Ask authors/readers for more resources

Cigarette smoke can cause endoplasmic reticulum stress and induce apoptosis, both of which are important pathogenic factors contributing to chronic obstructive pulmonary disease. The aim of the present study was to produce a cigarette smoke extract (CSE)-induced apoptosis human bronchial epithelial cell (HBEpC) model, to investigate the protective effects of resveratrol (RES). The role of oxygen-regulated protein 150 (ORP150) in the RES-induced activation of Sirtuin 1 (SIRT1) was additionally studied. Cultured HBEpCs were initially. treated with CSE to induce apoptosis, followed by an incubation either with or without RES. Numerous techniques were used to evaluate the outcomes of the present study, including cell counting kit-8 assay, quantitative polymerase chain reaction, western blotting, Hoechst 33342 staining and AnnexinV-PI flow cytometry apoptosis analyses, and gene knockdown. It was identified that 24 h 2% CSE incubation induced apoptosis in HBEpC, accompanied by an overexpression of the apoptosis molecular markers CCAAT-enhancer-binding protein homologous protein, caspase 4 and caspase 3. Pre-treatment of the cells with RES markedly alleviated the severity of apoptosis, as confirmed by apoptosis analyses and the expression levels of the apoptosis molecular markers. SIRT1 was shown to be over-expressed following RES treatment. However, following the gene knockdown of ORP150, the anti-apoptotic effects of RES were significantly attenuated. The results of the present study demonstrate that RES may have a protective effect against CSE-induced apoptosis, and a molecular pathway involving SIRT1 and ORP150 may be associated with the anti-apoptotic functions of RES in HBEpC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available