4.5 Article

A novel C-type lectin with two CRD domains from Chinese shrimp Fenneropenaeus chinensis functions as a pattern recognition protein

Journal

MOLECULAR IMMUNOLOGY
Volume 46, Issue 8-9, Pages 1626-1637

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.molimm.2009.02.029

Keywords

C-type lectin; Carbohydrate-recognition domain; Pattern-recognition receptor; Agglutinating; Innate immunity

Funding

  1. National Natural Science Foundation of China [30770282, 30728001]
  2. National High Technology Research and Development Program of China [2007AA09Z425]

Ask authors/readers for more resources

Lectins are regarded as potential immune recognition proteins. in this study, a novel C-type lectin (Fc-Lec2) was cloned from the hepatopancreas of Chinese shrimp, Fenneropenaeus chinensis. The cDNA of Fc-Lec2 is 1219 bp with an open reading frame (ORF) of 1002 bp that encodes a protein of 333 amino acids. Fc-Lec2 contains a signal peptide and two different carbohydrate recognition domains (CRDs) arranged in tandem. The first CRD contains a QPD (Gln-Pro-Asp) motif that has a predicted binding specificity for galactose and the second CRD contains a EPN (Glu-Pro-Asn) motif for mannose. Fc-Lec2 was constitutively expressed in the hepatopancreas of normal shrimp, and its expression was up-regulated in the hepatopancreas of shrimp challenged with bacteria or viruses. Recombinant mature Fc-Lec2 and its two individual CRI)s (CRD1 and 2) did not have hemagglutinating activity against animal red blood cells, but agglutinated some Gram-positive and Gram-negative bacteria in a calcium-dependent manner. The three recombinant proteins also bound to bacteria in the absence of calcium. Fc-Lec2 seems to have broader specificity and higher affinity for bacteria and polysaccharides (peptidoglycan, lipoteichoic acid and lipopolysaccharide) than each of the two individual CRDs. These data suggest that the two CRDs have synergistic effect, and the intact lectin may be more effective in response to bacterial infection, the Fc-Lec2 performs its pattern recognition function by binding to polysaccharides of pathogen cells. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available