4.4 Article

Proteomic investigation of cultivated fibroblasts from patients with mitochondrial short-chain acyl-CoA dehydrogenase deficiency

Journal

MOLECULAR GENETICS AND METABOLISM
Volume 111, Issue 3, Pages 360-368

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymgme.2014.01.007

Keywords

Proteomics; SCAD; Fibroblasts; Mitochondria; Protein analysis; Mass spectrometry

Funding

  1. Department of Clinical Medicine at Aarhus University, Denmark
  2. John and Birthe Meyer Foundation

Ask authors/readers for more resources

Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is a rare inherited autosomal recessive disorder with not yet well established mechanisms of disease. In the present study, the mitochondrial proteome of five symptomatic patients homozygous for missense variations in the SCAD gene ACADS was investigated in an extensive large-scale proteomic study to map protein perturbations linked to the disease. Fibroblast cultures of patient cells homozygous for either c.319C>T/p.Arg107Cys (n = 2) or c.1138C>T/p.Arg380Trp (n = 3) in ACADS, and healthy controls (normal human dermal fibroblasts), were studied. The mitochondrial proteome derived from these cultures was analyzed by label free proteomics using high mass accuracy nanoliquid chromatography tandem mass spectrometry (nanoLC-MS/MS). More than 300 mitochondrial proteins were identified and quantified. Thirteen proteins had significant alteration in protein levels in patients carrying variation c.319C>T in ACADS compared to controls and they belonged to various pathways, such as the antioxidant system and amino acid metabolism. Twenty-two proteins were found significantly altered in patients carrying variation c.1138C>T which included proteins associated with fatty acid beta-oxidation, amino acid metabolism and protein quality control system. Three proteins were found significantly regulated in both patient groups: adenylate kinase 4 (AK4), nucleoside diphosphate kinase A (NME1) and aldehyde dehydrogenase family 4 member Al (ALDH4A1). Proteins AK4 and NME1 deserve further investigation because of their involvement in energy reprogramming, cell survival and proliferation with relevance for SCAD deficiency and related metabolic disorders. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available