4.4 Article

Substrate oxidation and cardiac performance during exercise in disorders of long chain fatty acid oxidation

Journal

MOLECULAR GENETICS AND METABOLISM
Volume 105, Issue 1, Pages 110-115

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymgme.2011.09.030

Keywords

Fatty acid oxidation disorders; Exercise; Nutrition; MCT

Funding

  1. National Institutes of Health [K01 NIDDK DK071869]
  2. Oregon Clinical & Translational Research Institute (OCTRI) from the National Center for Research Resources (NCRR) [ULI RR24140]

Ask authors/readers for more resources

Background: The use of long-chain fatty acids (LCFAs) for energy is inhibited in inherited disorders of long-chain fatty acid oxidation (FAO). Increased energy demands during exercise can lead to cardiomyopathy and rhabdomyolysis. Medium-chain triglycerides (MCTs) bypass the block in long-chain FAO and may provide an alternative energy substrate to exercising muscle. Objectives: To determine the influence of isocaloric MCT versus carbohydrate (CHO) supplementation prior to exercise on substrate oxidation and cardiac workload in participants with carnitine palmitoyltransferase 2 (CPT2), very long-chain acyl-CoA dehydrogenase (VLCAD) and long-chain 3-hydroxyacyl CoA dehydrogenase (LCHAD) deficiencies. Design: Eleven subjects completed two 45-minute, moderate intensity, treadmill exercise studies in a randomized crossover design. An isocaloric oral dose of CHO or MCT-oil was administered prior to exercise; hemodynamic and metabolic indices were assessed during exertion. Results: When exercise was pretreated with MCT, respiratory exchange ratio (RER), steady state heart rate and generation of glycolytic intermediates significantly decreased while circulating ketone bodies significantly increased. Conclusions: MCT supplementation prior to exercise increases the oxidation of medium chain fats, decreases the oxidation of glucose and acutely lowers cardiac workload during exercise for the same amount of work performed when compared with CHO pre-supplementation. We propose that MCT may expand the usable energy supply, particularly in the form of ketone bodies, and improve the oxidative capacity of the heart in this population. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available