4.4 Article

Genetic variation in folylpolyglutamate synthase and gamma-glutamyl hydrolase and plasma homocysteine levels in the Singapore Chinese Health Study

Journal

MOLECULAR GENETICS AND METABOLISM
Volume 105, Issue 1, Pages 73-78

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymgme.2011.09.035

Keywords

FPGS; GGH; Folate; Homocysteine; SNP

Funding

  1. NCI NIH HHS [R01 CA080205-09, R01 CA043092-20, R01 CA080205-10S1, R01 CA080205, R01 CA043092, R01 CA080205-10] Funding Source: Medline

Ask authors/readers for more resources

The enzymes folylpolyglutamate synthase (FPGS) and gamma-glutamyl hydrolase (GGH) are essential for determining intracellular folate availability for one-carbon metabolism (OCM) pathways. FPGS adds glutamyl groups to the folate molecule, thereby converting folate into the preferred substrate for several enzymes in OCM pathways. GGH removes glutamyl groups, allowing folate metabolites to leave the cell. The purpose of this study was to evaluate whether single nucleotide polymorphisms (SNPs) in the FPGS and GGH genes influence measured plasma homocysteine levels. Study participants were a sub-cohort (n = 482) from the Singapore Chinese Health Study. SNPs were selected using HapMap tagSNPs and SNPs previously reported in the scientific literature. Multiple linear regression was used to evaluate the association between individual SNPs and plasma homocysteine levels. Two FPGS (rs10106, rs1098774) and 9 GGH (rs719235, rs1031552, rs1800909, rs3758149, rs3780126, rs3824333, rs4617146, rs11545076, rs11545078) SNPs were included in the final analysis. Neither of the FPGS SNPs, but three GGH SNPs were associated with plasma homocysteine levels: rs11545076 (p = 0.001), rs1800909 (p = 0.02), and rs3758149 (p = 0.006). Only one (rs11545076) remained statistically significant after adjusting for multiple comparisons. This study suggests that GGH SNPs, rs11545076, rs1800909, and rs3758149, may have functional relevance and result in alterations in plasma homocysteine levels. Since this is one of the first studies to assess FPGS and GGH genetic variants in relation to plasma homocysteine, further research is needed to confirm these findings and characterize the functional effects of these variants. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available