4.7 Article

An evaluation of the water utilization and grain production of irrigated and rain-fed croplands in China

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 529, Issue -, Pages 10-20

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2015.05.050

Keywords

Food security; Green-blue water; Water productivity; Marginal productivity of blue water; Irrigation district; China

Funding

  1. Special Foundation of National Science & Technology Supporting Plan [2011BAD29B09]
  2. 111 Project [B12007]

Ask authors/readers for more resources

Irrigation plays a major role in Chinese agricultural production, as China is experiencing water and food scarcity. Assessing water use (WU) and water productivity (WP) will contribute to regional water management and grain production improvement. This paper quantifies the water use and productivity in grain production for 31 Chinese provinces, autonomous regions and municipalities (PAMs) by distinguishing between irrigated and rain-fed farmland. An indicator of marginal productivity of blue water (MWPb) is established and calculated to evaluate irrigation profits. National water use (WUt) for grain cultivation from 1998 to 2010 was approximately 689.04 Gm(3) (42.26% blue water and 57.74% green water). The productive water proportions for irrigated and total croplands were 65.57% and 76.85%, respectively. Water use compositions from both blue-green and productive-unproductive perspectives changed slightly over time. The water use productivity (WPU) and water consumption productivity (WPC) for integrated grain products of China during the study period were 0.747 and 0.972 kg/m(3), respectively. The spatial distribution patterns of irrigated WPs (WPUI, WPCI) were consistent with those for total cropland. China has achieved sufficient food supply without increasing water use. The national MWPb was estimated to be 0.673 kg/m(3), revealing a higher increase in crop yield on irrigated land compared to rain-fed land. The northeast provinces urgently need to improve irrigation efficiency, and the North China Plain PAMs should promote rain-fed crop yield to increase grain production and control water use in the future. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available