4.5 Article

Proteomic and transcriptomic characterization of a virulence-deficient phosphatidylcholine-negative Agrobacterium tumefaciens mutant

Journal

MOLECULAR GENETICS AND GENOMICS
Volume 283, Issue 6, Pages 575-589

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00438-010-0542-7

Keywords

Membrane lipids; Phosphatidylcholine; alpha-Proteobacterium; Agrobacterium; Plant-microbe interaction

Funding

  1. German Research Foundation (DFG) [NA 240/7]
  2. Taiwan National Science Council (NSC) [95-2320-B-001-009]
  3. German Academic Exchange Service (DAAD)
  4. Taiwan National Science Council [0970029248P]

Ask authors/readers for more resources

Phosphatidylcholine (PC) is the most abundant phospholipid in eukaryotic membranes, whereas only a limited number of bacteria are able to synthesize PC. Intriguingly, many of the bacteria with PC-containing membranes interact with eukaryotic hosts. PC is one of the major membrane lipids in the phytopathogenic bacterium Agrobacterium tumefaciens. The presence of PC is critical for diverse cellular processes like motility, biofilm formation, stress resistance, and virulence. The exact role of PC in these processes is unknown. Here, we examined the global consequences of the complete loss of PC at the proteomic and transcriptomic levels. Both strategies validated the impaired virulence gene induction responsible for the virulence defect of the PC-deficient mutant. In addition, the proteomic approach revealed a limited subset of proteins with altered abundance including the reduced flagellar proteins FlaA and FlaB, which explains the motility defect of the PC mutant. At the whole-genome level, the loss of PC was correlated with altered expression of up to 13% of all genes, most encoding membrane or membrane-associated proteins and proteins with functions in the extracytoplasmic stress response. Our integrated analysis revealed that A. tumefaciens dynamically remodels its membrane protein composition in order to sustain normal growth in the absence of PC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available