3.9 Article

Phosphorylation-dependent sumoylation regulates estrogen-related receptor-α and -γ transcriptional activity through a synergy control motif

Journal

MOLECULAR ENDOCRINOLOGY
Volume 22, Issue 3, Pages 570-584

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1210/me.2007-0357

Keywords

-

Ask authors/readers for more resources

Interplay between different posttranslational modifications of transcription factors is an important mechanism to achieve an integrated regulation of gene expression. For the estrogen-related receptors (ERRs) alpha and gamma, regulation by posttranslational modifications is still poorly documented. Here we show that transcriptional repression associated with the ERR amino-terminal domains is mediated through sumoylation at a conserved phosphosumoyl switch, psi KxEPxSP, that exists within a larger synergy control motif. Arginine substitution of the sumoylatable lysine residue or alanine substitution of a nearby phosphorylatable serine residue (serine 19 in ERR alpha) increased the transcriptional activity of both ERR alpha and -gamma. In addition, phospho-mimetic substitution of the serine residue with aspartate restored the sumoylation and transcriptional repression activity. The increased transcriptional activity of the sumoylation-deficient mutants was more pronounced in the presence of multiple adjacent ERR response elements. We also identified protein inhibitor of activated signal transducer and activator of transcription y as an interacting partner and a small ubiquitin-related modifier E3 ligase for ERR alpha. Importantly, analysis with a phospho-specific antibody revealed that sumoylation of ERR alpha in mouse liver requires phosphorylation of serine 19. Taken together, these results show that the interplay of phosphorylation and sumoylation in the amino-terminal domain provides an additional mechanism to regulate the transcriptional activity of ERR alpha and -gamma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available