4.7 Review

Molecular ecology and adaptation of visual photopigments in craniates

Journal

MOLECULAR ECOLOGY
Volume 21, Issue 13, Pages 3121-3158

Publisher

WILEY
DOI: 10.1111/j.1365-294X.2012.05617.x

Keywords

adaptation; craniates; ecology; evolution; gene; opsin

Funding

  1. Biotechnology and Biological Sciences Research Council (BBSRC), UK
  2. Australian Research Council (ARC), Australia

Ask authors/readers for more resources

In craniates, opsin-based photopigments expressed in the eye encode molecular light sensors that constitute the initial protein in photoreception and the activation of the phototransduction cascade. Since the cloning and sequencing of the first vertebrate opsin gene (bovine rod opsin) nearly 30 years ago (Ovchinnikov Yu 1982, FEBS Letters, 148, 179191; Hargrave et similar to al. 1983, Biophysics of Structure & Mechanism, 9, 235244; Nathans & Hogness 1983, Cell, 34, 807814), it is now well established that variation in the subtypes and spectral properties of the visual pigments that mediate colour and dim-light vision is a prevalent mechanism for the molecular adaptation to diverse light environments. In this review, we discuss the origins and spectral tuning of photopigments that first arose in the agnathans to sample light within the ancient aquatic landscape of the Early Cambrian, detailing the molecular changes that subsequently occurred in each of the opsin classes independently within the main branches of extant jawed gnathostomes. Specifically, we discuss the adaptive changes that have occurred in the photoreceptors of craniates as they met the ecological challenges to survive in quite differing photic niches, including brightly lit aquatic surroundings; the deep sea; the transition to and from land; diurnal, crepuscular and nocturnal environments; and light-restricted fossorial settings. The review ends with a discussion of the limitations inherent to the nocturnal-bottleneck hypothesis relevant to the evolution of the mammalian visual system and a proposition that transition through a mesopic-bottleneck may be a more appropriate model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available