4.7 Article

The Strait of Gibraltar as a major biogeographic barrier in Mediterranean conifers: a comparative phylogeographic survey

Journal

MOLECULAR ECOLOGY
Volume 19, Issue 24, Pages 5452-5468

Publisher

WILEY
DOI: 10.1111/j.1365-294X.2010.04912.x

Keywords

Abies; cytoplasmic DNA; isolation with migration model; phylogeography; Pinus; Strait of Gibraltar; Taxus

Funding

  1. European Union
  2. Spanish Ministry of Science and Innovation [CGL2007-63107/BOS]
  3. Spanish Ministry of Science and Environment [CC03-048, AEG06-054, 26/2007]
  4. Generalitat de Catalunya (Emergent Research Group) [2005SGR00381]

Ask authors/readers for more resources

The Strait of Gibraltar (SG) is reputed for being both a bridge and a geographic barrier to biological exchanges between Europe and Africa. Major genetic breaks associated with this strait have been identified in various taxa, but it is unknown whether these disjunctions have been produced simultaneously or by independent biogeographic processes. Here, the genetic structure of five conifers distributed on both sides of the SG was investigated using mitochondrial (nad1 b/c, nad5-1, nad5-4 and nad7-1) and chloroplast (Pt1254, Pt15169, Pt30204, Pt36480, Pt71936 and Pt87268) DNA markers. The distribution of genetic variation was partially congruent between types of markers within the same species. Across taxa, there was a significant overlapping between the SG and the genetic breaks detected, especially for the four Tertiary species surveyed (Abies pinsapo complex, Pinus nigra, Pinus pinaster and Taxus baccata). For most of these taxa, the divergence of populations across the SG could date back to long before the Pleistocene glaciations. However, their strongly different cpDNA G(ST) and R-ST values point out that they have had dissimilar population histories, which might include contrasting amounts of pollen-driven gene flow since their initial establishment in the region. The fifth species, Pinus halepensis, was genetically depauperated and homogenous on both sides of the SG. A further analysis of nuclear DNA sequences with coalescent-based isolation with migration models suggests a Pleistocene divergence of P. halepensis populations across the SG, which is in sharp contrast with the pre-Pleistocene divergence dates obtained for P. pinaster. Altogether, these results indicate that the genetic breaks observed across this putative biogeographical barrier have been produced by independent evolutionary processes related to the biological history of each individual species instead of a common vicariant phenomenon.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available