4.7 Article

Influence of cryptic population structure on observed mating patterns in the wild progenitor of maize (Zea mays ssp parviglumis)

Journal

MOLECULAR ECOLOGY
Volume 20, Issue 1, Pages 46-55

Publisher

WILEY
DOI: 10.1111/j.1365-294X.2010.04924.x

Keywords

mating system; paternity analysis; poldisp; pollen flow; teosinte; twogener

Funding

  1. UC Davis IGERT for Biological Invasions [NSFDGE 0114432]
  2. United States Department of Agriculture [2009-01864]
  3. Jastro Shields Research Fellowship
  4. UC

Ask authors/readers for more resources

Indirect two-generation analysis of pollen flow has proven to be an effective alternative to exhaustive paternity analysis in numerous plant populations. In this investigation, the method is extended to an annual wild maize species, Zea mays ssp. parviglumis (Poaceae). Our analysis of mating system in parviglumis revealed high levels of outcrossing and higher biparental inbreeding than typically observed in grasses. Pollen dispersal analysis suggested low levels of long-distance dispersal. Given previous evidence for intrapopulation genetic structure in parviglumis populations, we explored the impact of cryptic population structure on estimates of mating system and pollen flow. Subpopulations inferred through spatially explicit Bayesian assignment showed markedly different values for both mating system parameters and pollen flow than the entire population. Finally, a novel method of pollen haplotype assignment revealed nonrandom mating consistent with intrapopulation structure. These results indicate parviglumis could be particularly susceptible to habitat fragmentation currently occurring throughout Mexico due to recent changes in land use.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available