4.7 Article

Transcriptomic variation and plasticity in rufous-collared sparrows (Zonotrichia capensis) along an altitudinal gradient

Journal

MOLECULAR ECOLOGY
Volume 17, Issue 20, Pages 4556-4569

Publisher

WILEY
DOI: 10.1111/j.1365-294X.2008.03942.x

Keywords

adaptation; cross-species hybridization; ecological genomics; high altitude; microarray; phenotypic plasticity

Funding

  1. INRENA [004-2007]
  2. NSF [DEB-0543262, EF-0723771, BES-0652006]
  3. American Ornithologists' Union
  4. American Museum of Natural History, Explorers' Club, LSUMNS Birdathon Funds, LSUT.
  5. Society of Integrative and Comparative Biology
  6. Nature Conservancy-Migratory Bird Program
  7. Conservation International - CABS
  8. World Wildlife fund - US
  9. Environment Canada - WILDSPACE

Ask authors/readers for more resources

As modern genomic tools are developed for ecologically compelling models, field manipulation experiments will become important for establishing the role of functional genomic variation in physiological acclimation and evolutionary adaptation along environmental clines. High-altitude habitats expose individuals to hypoxic and thermal stress, necessitating physiological acclimation, which may result in evolutionary adaptation. We assayed skeletal muscle transcriptomic profiles of rufous-collared sparrows (Zonotrichia capensis) distributed along an altitudinal gradient on the Pacific slope of the Peruvian Andes. Nearly 200 unique transcripts were differentially expressed between high-altitude [4100 m above sea level (a.s.l.)] and low-altitude (2000 m a.s.l.) populations in their native habitats. Gene ontology and network analyses revealed that these transcripts are primarily involved in oxidative phosphorylation, protein biosynthesis, signal transduction and oxidative stress response pathways. To assess the plasticity in gene expression differences between populations, we performed a 'common garden' experiment in which high- and low-altitude individuals were transferred to a common low-altitude site (similar to 150 m). None of the genes that were differentially expressed between populations at the native altitudes remained significantly different between populations in the common garden. The role of gene expression variation in adaptation and acclimation to environmental stress is largely unexplored in natural populations of birds. These results demonstrate substantial plasticity in the biochemical pathways that underpin cold and hypoxia compensation in Z. capensis, which may mechanistically contribute to enabling the broad altitudinal distribution of the species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available