4.8 Article

RNase H and Multiple RNA Biogenesis Factors Cooperate to Prevent RNA:DNA Hybrids from Generating Genome Instability

Journal

MOLECULAR CELL
Volume 44, Issue 6, Pages 978-988

Publisher

CELL PRESS
DOI: 10.1016/j.molcel.2011.10.017

Keywords

-

Funding

  1. Howard Hughes Medical Institution
  2. Richard Starr Ross Clinician Scientist Award

Ask authors/readers for more resources

Genome instability, a hallmark of cancer progression, is thought to arise through DNA double strand breaks (DSBs). Studies in yeast and mammalian cells have shown that DSBs and instability can occur through RNA:DNA hybrids generated by defects in RNA elongation and splicing. We report that in yeast hybrids naturally form at many loci in wild-type cells, likely due to transcriptional errors, but are removed by two evolutionarily conserved RNase H enzymes. Mutants defective in transcriptional repression, RNA export and RNA degradation show increased hybrid formation and associated genome instability. One mutant, sin3 Delta, changes the genome profile of hybrids, enhancing formation at ribosomal DNA. Hybrids likely induce damage in G1, S and G2/M as assayed by Rad52 foci. In summary, RNA:DNA hybrids are a potent source for changing genome structure. By preventing their formation and accumulation, multiple RNA biogenesis factors and RNase H act as guardians of the genome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available