4.8 Article

NBS1 Recruits RAD18 via a RAD6-like Domain and Regulates Pol η-Dependent Translesion DNA Synthesis

Journal

MOLECULAR CELL
Volume 43, Issue 5, Pages 788-797

Publisher

CELL PRESS
DOI: 10.1016/j.molcel.2011.07.026

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science, and Technology of Japan
  2. Grants-in-Aid for Scientific Research [22019026, 21310035, 23241021, 22131001, 22131008, 22249005, 22710053, 23651045, 22651018] Funding Source: KAKEN

Ask authors/readers for more resources

Translesion DNA synthesis, a process orchestrated by monoubiquitinated PCNA, is critical for DNA damage tolerance. While the ubiquitin-conjugating enzyme RAD6 and ubiquitin ligase RAD18 are known to monoubiquitinate PCNA, how they are regulated by DNA damage is not fully understood. We show that NBS1 (mutated in Nijmegen breakage syndrome) binds to RAD18 after UV irradiation and mediates the recruitment of RAD18 to sites of DNA damage. Disruption of NBS1 abolished RAD18-dependent PCNA ubiquitination and Pol eta focus formation, leading to elevated UV sensitivity and mutation. Unexpectedly, the RAD18-interacting domain of NBS1, which was mapped to its C terminus, shares structural and functional similarity with the RAD18-interacting domain of RAD6. These domains of NBS1 and RAD6 allow the two proteins to interact with RAD18 homodimers simultaneously and are crucial for Pol eta-dependent UV tolerance. Thus, in addition to chromosomal break repair, NBS1 plays a key role in translesion DNA synthesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available