4.8 Article

Two-Step Recognition of DNA Damage for Mammalian Nucleotide Excision Repair: Directional Binding of the XPC Complex and DNA Strand Scanning

Journal

MOLECULAR CELL
Volume 36, Issue 4, Pages 642-653

Publisher

CELL PRESS
DOI: 10.1016/j.molcel.2009.09.035

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan
  2. Japan Science and Technology Agency (JST)
  3. Takeda Science Foundation

Ask authors/readers for more resources

For mammalian nucleotide excision repair (NER), DNA lesions are recognized in at least two steps involving detection of unpaired bases by the XPC protein complex and the subsequent verification of injured bases. Although lesion verification is important to ensure high damage discrimination and the accuracy of the repair system, it has been unclear how this is accomplished. Here, we show that damage verification involves scanning of a DNA strand from the site where XPC is initially bound. Translocation by the NER machinery exhibits a 5'-to-3' directionality, strongly suggesting involvement of the XPD helicase, a component of TFIIH. Furthermore, the initial orientation of XPC binding is crucial in that only one DNA strand is selected to search for the presence of lesions. Our results dissect the intricate molecular mechanism of NER and provide insights into a strategy for mammalian cells to survey large genomes to detect DNA damage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available