4.8 Article

Lymphocyte-specific compensation for XLF/Cernunnos end-joining functions in V(D)J recombination

Journal

MOLECULAR CELL
Volume 31, Issue 5, Pages 631-640

Publisher

CELL PRESS
DOI: 10.1016/j.molcel.2008.07.017

Keywords

-

Funding

  1. Howard Hughes Medical Institute Funding Source: Medline
  2. NCI NIH HHS [P01 CA092625, CA92625, P01 CA092625-07] Funding Source: Medline
  3. NIAID NIH HHS [P01 AI035714, AI35714, P01 AI035714-07] Funding Source: Medline

Ask authors/readers for more resources

Mutations in XLF/Cernunnos (XLF) cause lymphocytopenia in humans, and various studies suggest an XLF role in classical nonhomologous end joining (C-NHEJ). We now find that XLF-deficient mouse embryonic fibroblasts are ionizing radiation (IR) sensitive and severely impaired for ability to support V(D)J recombination. Yet mature lymphocyte numbers in XLF-deficient mice are only modestly decreased. Moreover, XLF-deficient pro-B lines, while IR-sensitive, perform V(D)J recombination at nearly wild-type levels. Correspondingly, XLF/p53-double-deficient mice are not markedly prone to the pro-B lymphomas that occur in previously characterized C-NHEJ/p53-deficient mice; however, like other C-NHEJ/p53-deficient mice, they still develop medulloblastomas. Despite nearly normal V(D)J recombination in developing B cells, XLF-deficient mature B cells are moderately defective for immunoglobulin heavy-chain class switch recombination. Together, our results implicate XLF as a C-NHEJ factor but also indicate that developing mouse lymphocytes harbor cell-type-specific factors/pathways that compensate for the absence of XLF function during V(D)J recombination.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available