4.8 Article

The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: Implications for crossover incidence during mitotic recombination

Journal

MOLECULAR CELL
Volume 29, Issue 2, Pages 243-254

Publisher

CELL PRESS
DOI: 10.1016/j.molcel.2007.11.033

Keywords

-

Ask authors/readers for more resources

Saccharomyces cerevisiae Srs2 helicase was shown to displace Rad51 in vitro upon translocation on single-stranded DNA. This activity is sufficient to account for its antirecombination effect and for the elimination of otherwise dead-end recombination intermediates. Roles for the helicase activity are yet unknown. Because cells lacking Srs2 show increased incidence of mitotic crossovers, it was postulated that Srs2 promotes synthesis-dependent strand annealing (SDSA) by unwinding the elongating invading strand from the donor strand. We report here that synthetic DNA structures that mimic D loops are good substrates for the Srs2 helicase activity, that Srs2 translocates on RPA-coated ssDNA, and, furthermore, that the helicase activity is largely stimulated by the presence of Rad51 nucleoprotein filaments on double-stranded DNA. These properties strongly support the idea that Srs2 actively prevents crossovers by promoting SDSA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available