4.6 Article

Constitutive AhR activation leads to concomitant ABCG2-mediated multidrug resistance in cisplatin-resistant esophageal carcinoma cells

Journal

MOLECULAR CARCINOGENESIS
Volume 51, Issue 6, Pages 449-464

Publisher

WILEY-BLACKWELL
DOI: 10.1002/mc.20810

Keywords

ABCG2; multidrug resistance; cisplatin; esophageal squamous cell carcinoma; aryl hydrocarbon receptor

Funding

  1. School of Pharmacy, CUHK

Ask authors/readers for more resources

Esophageal squamous cell carcinoma (ESCC) is a highly malignant disease that is generally not responding to chemotherapy. It is particularly predominant in China. Although ESCC is significantly associated with cigarette smoking, the relationship between its molecular pathogenesis and responsiveness to chemotherapy and cigarette smoke remains elusive. This study reported the constitutive activation of aryl hydrocarbon receptor (AhR), leading to ABCG2 upregulation and the multidrug resistance (MDR) phenotype, in ESCC cell lines with acquired cisplatin resistance. Reporter gene assay, chromatin immunoprecipitation analysis and specific gene knockdown confirmed that the enhanced AhR binding to a xenobiotic response element (XRE) within the ABCG2 promoter is responsible for ABCG2 overexpression. A HSP90 inhibitor (17-AAG) and two AhR antagonists (kaempferol and salicylamide) were shown to inhibit ABCG2 upregulation, thereby reversing the ABCG2-mediated MDR. Our data therefore advocate the use of these inhibitors as novel chemosensitizers for the treatment of esophageal cancer. (C) 2011 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available