4.6 Article

The Use of Olaparib (AZD2281) Potentiates SN-38 Cytotoxicity in Colon Cancer Cells by Indirect Inhibition of Rad51-Mediated Repair of DNA Double-Strand Breaks

Journal

MOLECULAR CANCER THERAPEUTICS
Volume 13, Issue 5, Pages 1170-1180

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-13-0683

Keywords

-

Categories

Funding

  1. Ministry of Health, Labor, and Welfare, Japan
  2. National Cancer Center Research and Development Fund [21bun-shi-9-(2), 23-A-2, 23-A-7]

Ask authors/readers for more resources

Potent application of topoisomerase I inhibitor plus PARP inhibitor has been suggested to be an effective strategy for cancer therapy. Reportedly, mismatch repair (MMR)-deficient colon cancer cells are sensitive to topoisomerase I inhibitor, presumably due to microsatellite instability (MSI) of the MRE11 locus. We examined the synergy of SN-38, an active metabolite of irinotecan, in combination with the PARP inhibitor olaparib in colon cancer cells showing different MMR status, such as MSI or microsatellite stable (MSS) phenotype. Treatment with SN-38 and olaparib in combination almost halved the IC50 of SN-38 for a broad spectrum of colon cancer cells independent of the MMR status. Furthermore, olaparib potentiated S-phase-specific double-strand DNA breaks (DSB) induced by SN-38, which is followed by Rad51 recruitment. siRNA-mediated knockdown of Rad51, but not Mre11 or Rad50, increased the sensitivity to olaparib and/or SN-38 treatment in colon cancer cells. In vivo study using mouse xenograft demonstrated that olaparib was effective to potentiate the antitumor effect of irinotecan. In conclusion, olaparib shows a synergistic effect in colon cancer cells in combination with SN-38 or irinotecan, potentiated by the Rad51-mediated HR pathway, irrespective of the Mre11-mediated failure of the MRN complex. These results may contribute to future clinical trials using PARP inhibitor plus topoisomerase I inhibitor in combination. Furthermore, the synergistic effect comprising topoisomerase I-mediated DNA breakage-reunion reaction, PARP and Rad51-mediated HR pathway suggests the triple synthetic lethal pathways contribute to this event and are applicable as a potential target for future chemotherapy. (C) 2014 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available