4.6 Article

Activation of IL-6R/JAK1/STAT3 Signaling Induces De Novo Resistance to Irreversible EGFR Inhibitors in Non-Small Cell Lung Cancer with T790M Resistance Mutation

Journal

MOLECULAR CANCER THERAPEUTICS
Volume 11, Issue 10, Pages 2254-2264

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-12-0311

Keywords

-

Categories

Funding

  1. Ministry of Health & Welfare, Republic of Korea [A100580]
  2. Ministry for Health, Welfare, Republic of Korea [A101956]
  3. Yonsei University College of Medicine [6-2010-0061]
  4. Korea Health Promotion Institute [A101956, A100580] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

The secondary T790M mutation in epidermal growth factor receptor (EGFR) is the major mechanism of acquired resistance to EGFR tyrosine kinase inhibitors (TKI) in non-small cell lung cancer (NSCLC). Although irreversible EGFR TKIs, such as afatinib or dacomitinib, have been introduced to overcome the acquired resistance, they showed a limited efficacy in NSCLC with T790M. Herein, we identified the novel de novo resistance mechanism to irreversible EGFR TKIs in H1975 and PC9-GR cells, which are NSCLC cells with EGFR T790M. Afatinib activated interleukin-6 receptor (IL-6R)/JAK1/STAT3 signaling via autocrine IL-6 secretion in both cells. Inhibition of IL-6R/JAK1/STAT3 signaling pathway increased the sensitivity to afatinib. Cancer cells showed stronger STAT3 activation and enhanced resistance to afatinib in the presence of MRC5 lung fibroblasts. Blockade of IL-6R/JAK1 significantly increased the sensitivity to afatinib through inhibition of afatinib-induced STAT3 activation augmented by the interaction with fibroblasts, suggesting a critical role of paracrine IL-6R/JAK1/STAT3 loop between fibroblasts and cancer cells in the development of drug resistance. The enhancement of afatinib sensitivity by inhibition of IL-6R/JAK1/STAT3 signaling was confirmed in in vivo PC9-GR xenograft model. Similar to afatinib, de novo resistance to dacomitinib in H1975 and PC9-GR cells was also mediated by dacomitinib-induced JAK1/STAT3 activation. Taken together, these findings suggest that IL6R/JAK1/STAT3 signaling can be a potential therapeutic target to enhance the efficacy of irreversible EGFR TKIs in patients with EGFR T790M. Mol Cancer Ther; 11(10); 2254-64. (C) 2012 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available