4.6 Article

Glioblastoma Cancer-Initiating Cells Inhibit T-Cell Proliferation and Effector Responses by the Signal Transducers and Activators of Transcription 3 Pathway

Journal

MOLECULAR CANCER THERAPEUTICS
Volume 9, Issue 1, Pages 67-78

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-09-0734

Keywords

-

Categories

Funding

  1. The Anthony Bullock III Foundation
  2. Dr. Marnie Rose Foundation
  3. University of Texas M.D. Anderson Cancer Center
  4. NIH [CA120813-01]
  5. NATIONAL CANCER INSTITUTE [R01CA120813] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Glioblastoma multiforme (GBM) is a lethal cancer that responds poorly to radiotherapy and chemotherapy. Glioma cancer-initiating cells have been shown to recapitulate the characteristic features of GBM and mediate chemotherapy and radiation resistance. However, it is unknown whether the cancer-initiating cells contribute to the profound immune suppression in GBM patients. Recent studies have found that the activated form of signal transducer and activator of transcription 3 (STAT3) is a key mediator in GBM immunosuppression. We isolated and generated CD133+ cancer-initiating single colonies from GBM patients and investigated their immune-suppressive properties. We found that the cancer-initiating cells inhibited T-cell proliferation and activation, induced regulatory Tcells, and triggered T-cell apoptosis. The STAT3 pathway is constitutively active in these clones and the immunosuppressive properties were markedly diminished when the STAT3 pathway was blocked in the cancer-initiating cells. These findings indicate that cancer-initiating cells contribute to the immune evasion of GBM and that blockade of the STAT3 pathway has therapeutic potential. Mol Cancer Ther; 9(1); 67-78. (C) 2010 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available