4.5 Article

T-Type Ca2+ Channel Inhibition Induces p53-Dependent Cell Growth Arrest and Apoptosis through Activation of p38-MAPK in Colon Cancer Cells

Journal

MOLECULAR CANCER RESEARCH
Volume 12, Issue 3, Pages 348-358

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1541-7786.MCR-13-0485

Keywords

-

Funding

  1. UVA Department of Radiation Oncology Dr. George Amornio pilot grant [UVA P30 CA44579]
  2. James and Rebecca Craig fund

Ask authors/readers for more resources

Epithelial tumor cells express T-type Ca2+ channels, which are thought to promote cell proliferation. This study investigated the cellular response to T-type Ca2+ channel inhibition either by small-molecule antagonists or by RNAi-mediated knockdown. Selective T-type Ca2+ channel antagonists caused growth inhibition and apoptosis more effectively in HCT116 cells expressing wild-type p53 (p53wt), than in HCT116 mutant p53(-/-) cells. These antagonists increased p53-dependent gene expression and increased genomic occupancy of p53 at specific target sequences. The knockdown of a single T-type Ca2+ channel subunit (CACNA1G) reduced cell growth and induced caspase-3/7 activation in HCT116 p53wt cells as compared with HCT116 mutant p53(-/-) cells. Moreover, CaCo2 cells that do not express functional p53 were made more sensitive to CACNA1G knockdown when p53wt was stably expressed. Upon T-type Ca2+ channel inhibition, p38-MAPK promoted phosphorylation at Ser392 of p53wt. Cells treated with the inhibitor SB203580 or specific RNAi targeting p38-MAPK alpha/beta (MAPK14/MAPK11) showed resistance to T-type Ca2+ channel inhibition. Finally, the decreased sensitivity to channel inhibition was associated with decreased accumulation of p53 and decreased expression of p53 target genes, p21Cip1 (CDKN1A) and BCL2-binding component 3 (BBC3/PUMA). (C)2013 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available