4.5 Article

MiR-335 Inhibits Small Cell Lung Cancer Bone Metastases via IGF-IR and RANKL Pathways

Journal

MOLECULAR CANCER RESEARCH
Volume 12, Issue 1, Pages 101-110

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1541-7786.MCR-13-0136

Keywords

-

Funding

  1. National Natural Science Foundation of China [81072190, 30900244, 81101920]
  2. Science & Technology Department of Sichuan Province [2010SZ0168]
  3. Ministry of Education of the People's Republic of China [(2011)1139]
  4. Sichuan University [2011SCU04B42]
  5. U.S. Army Medical Research and Materiel Command research contract USAMRMC [0704400]

Ask authors/readers for more resources

Small cell lung cancer (SCLC) is a rapidly progressing, incurable cancer that frequently spreads to bone. New insights are needed to identify therapeutic targets to prevent or retard SCLC metastatic progression. Human SCLC SBC-5 cells in mouse xenograft models home to skeletal and nonskeletal sites, whereas human SCLC SBC-3 cells only pervade nonskeletal sites. Because microRNAs (miRNA) often act as tumor regulators, we investigated their role in preclinical models of SCLC. miRNA expression profiling revealed selective and reduced expression of miRNA (miR)-335 and miR-29a in SBC-5 cells, compared with SBC-3 cells. In SBC-5 cells, miR-335 expression correlated with bone osteolytic lesions, whereas miR-29a expression did not. Overexpression of miR-335 in SBC-5 cells significantly reduced cell migration, invasion, proliferation, colony formation, and osteoclast induction in vitro. Importantly, in miR-335 overexpressing SBC-5 cell xenografts (n = 10), there were minimal osteolytic lesions in the majority of mice and none in three mice. Expression of RANK ligand (RANKL) and insulin-like growth factor-I receptor (IGF-IR), key mediators of bone metastases, were elevated in SBC-5 as compared with SBC-3 cells. Mechanistically, overexpression of miR-335 in SBC-5 cells reduced RANKL and IGF-IR expression. In conclusion, loss of miR-335 promoted SCLC metastatic skeletal lesions via deregulation of IGF-IR and RANKL pathways and was associated with metastatic osteolytic skeletal lesions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available