4.5 Article

Regulation of mTOR Complex 2 Signaling in Neurofibromatosis 2-Deficient Target Cell Types

Journal

MOLECULAR CANCER RESEARCH
Volume 10, Issue 5, Pages 649-659

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1541-7786.MCR-11-0425-T

Keywords

-

Funding

  1. NIH [NS024279]
  2. Department of Defense (DOD)
  3. S. Sydney De Young Foundation, Neurofibromatosis, Inc., New England
  4. Children's Tumor Foundation Drug Discovery Initiative

Ask authors/readers for more resources

Inactivating mutations in the neurofibromatosis 2 (NF2) tumor suppressor gene results in the development of schwannomas and meningiomas. Using NF2-deficient meningioma cells and tumors, together with the normal cellular counterparts that meningiomas derive, arachnoid cells, we identified merlin as a novel negative regulator of mTOR complex 1 (mTORC1). We now show that merlin positively regulates the kinase activity of mTORC2, a second functionally distinct mTOR complex, and that downstream phosphorylation of mTORC2 substrates, including Akt, is reduced upon acute merlin deficiency in cells. In response to general growth factor stimulation, Akt signaling is attenuated in merlin merlin RNA interference-suppressed human arachnoid and Schwann cells by mechanisms mediated by hyperactivem TORC1 and impaired mTORC2. Moreover, Akt signaling is impaired differentially in a cell type-dependent manner in response to distinct growth factor stimuli. However, contrary to activation of mTORC1, the attenuated mTORC2 signaling profiles exhibited by normal arachnoid and Schwann cells in response to acute merlin loss were not consistently reflected in NF2-deficient meningiomas and schwannomas, suggesting additional genetic events may have been acquired in tumors after initial merlin loss. This finding contrasts with another benign tumor disorder, tuberous sclerosis complex, which exhibits attenuated mTORC2 signaling profiles in both cells and tumors. Finally, we examined rapamycin, as well as the mTOR kinase inhibitor, Torin1, targeting both mTOR complexes to identify the most efficacious class of compounds for blocking mTOR-mediated signaling and proliferation in merlin-deficient meningioma cells. These studies may ultimately aid in the development of suitable therapeutics for NF2-associated tumors. Mol Cancer Res; 10(5); 649-59. (C) 2012 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available