4.5 Article

Vinculin Activators Target Integrins from Within the Cell to Increase Melanoma Sensitivity to Chemotherapy

Journal

MOLECULAR CANCER RESEARCH
Volume 9, Issue 6, Pages 712-723

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1541-7786.MCR-10-0599

Keywords

-

Funding

  1. NIH [1K01CA111818, R01CA130916]
  2. University of Iowa [5T32GM073610]

Ask authors/readers for more resources

Metastatic melanoma is an aggressive skin disease for which there are no effective therapies. Emerging evidence indicates that melanomas can be sensitized to chemotherapy by increasing integrin function. Current integrin therapies work by targeting the extracellular domain, resulting in complete gains or losses of integrin function that lead to mechanism-based toxicities. An attractive alternative approach is to target proteins, such as vinculin, that associate with the integrin cytoplasmic domains and regulate its ligand-binding properties. Here, we report that a novel reagent, denoted vinculin-activating peptide or VAP, increases integrin activity from within the cell, as measured by elevated (i) numbers of active integrins, (ii) adhesion of cells to extracellular matrix ligands, (iii) numbers of cell-matrix adhesions, and (iv) downstream signaling. These effects are dependent on both integrins and a key regulatory residue A50 in the vinculin head domain. We further show that VAP dramatically increases the sensitivity of melanomas to chemotherapy in clonal growth assays and in vivo mouse models of melanoma. Finally, we show that the increase in chemosensitivity results from increases in DNA damage-induced apoptosis in a p53-dependent manner. Collectively, these findings show that integrin function can be manipulated from within the cell and validate integrins as a new therapeutic target for the treatment of chemoresistant melanomas. Mol Cancer Res; 9(6); 712-23. (C)2011 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available