4.5 Article

The β1-Integrin-Dependent Function of RECK in Physiologic and Tumor Angiogenesis

Journal

MOLECULAR CANCER RESEARCH
Volume 8, Issue 5, Pages 665-676

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1541-7786.MCR-09-0351

Keywords

-

Funding

  1. Princess Takamatsu Cancer Research Fund [05-23706]
  2. Takeda Science Foundation
  3. Japan Ministry of Education, Culture, Sports, Science and Technology

Ask authors/readers for more resources

Vascular endothelial cells produce considerable amounts of matrix metalloproteinases (MMP), including MMP-2, MMP-9, and membrane type 1 (MT1)-MMP. However, little is known about the regulatory mechanisms of these protease activities exhibited during vascular development. A glycosylphosphatidylinositol-anchored glycoprotein, reversion-inducing cysteine-rich protein with Kazal motifs ( RECK), has been shown to attenuate MMP-2 maturation by directly interacting with MT1-MMP. Here, we show that an angiogenic factor angiopoietin-1 induces RECK expression in human umbilical vein endothelial cells ( HUVEC), and RECK depletion in these cells results in defective vascular tube formation and cellular senescence. We further observed that RECK depletion downregulates beta 1-integrin activation, which was associated with decreased autophosphorylation of focal adhesion kinase and increased expression of a cyclin-dependent kinase inhibitor p21(CIP1). In agreement, significant downregulation of beta 1-integrin activity was observed in vascular endothelial cells in Reck-/- mouse embryos. In HUVECs, specific inhibition of MMP-2 significantly antagonized the effect of RECK depletion on beta 1-integrin signaling, cell proliferation, and tube elongation. Furthermore, we observed that hypervascular tumor-derived cell lines can induce high RECK expression in convoluted vascular endothelial cells, and this in turn supports tumor growth. Targeting RECK specifically in tumor-associated vascular endothelial cells resulted in tumor regression. Therefore, we propose that RECK in tumor vascular endothelial cells can be an interesting target of cancer treatment via abortion of tumor angiogenesis. Mol Cancer Res; 8(5); 665-76. (C)2010 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available