4.5 Article

The Fer Tyrosine Kinase Cooperates with Interleukin-6 to Activate Signal Transducer and Activator of Transcription 3 and Promote Human Prostate Cancer Cell Growth

Journal

MOLECULAR CANCER RESEARCH
Volume 7, Issue 1, Pages 142-155

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1541-7786.MCR-08-0117

Keywords

-

Funding

  1. Cancer Research Society, Inc.
  2. Department of Urology
  3. McGill University Health Center
  4. Department of Biochemistry, Faculty of Graduate Studies, Montreal University
  5. McGill Urology Division

Ask authors/readers for more resources

Androgen withdrawal is the most effective form of systemic therapy for men with advanced prostate cancer. Unfortunately, androgen-independent progression is inevitable, and the development of hormone-refractory disease and death occurs within 2 to 3 years in most men. The understanding of molecular mechanisms promoting the growth of androgen-independent prostate cancer cells is essential for the rational design of agents to treat advanced disease. We previously reported that Fer tyrosine kinase level correlates with the development of prostate cancer and aggressiveness of prostate cancer cell lines. Moreover, knocking down Fer expression interferes with prostate cancer cell growth in vitro. However, the mechanism by which Fer mediates prostate cancer progression remains elusive. We present here that Fer and phospho-Y705 signal transducer and activator of transcription 3 (STAT3) are barely detectable in human benign prostate tissues but constitutively expressed in the cytoplasm and nucleus of the same subsets of tumor cells in human prostate cancer. The interaction between STAT3 and Fer was observed in all prostate cancer cell lines tested, and this interaction is mediated via the Fer Src homology 2 domain and modulated by interleukin-6 (IL-6). Moreover, IL-6 triggered a rapid formation of Fer/gp130 and Fer/STAT3 complexes in a time-dependent manner and consistent with changes in Fer and STAT3 phosphorylation and cytoplasmic/nuclear distribution. The modulation of Fer expression/activation resulted in inhibitory or stimulatory effects on STAT3 phosphorylation, nuclear translocation, and transcriptional activation. These effects translated in IL-6-mediated PC-3 cell growth. Taken together, these results support an important function of Fer in prostate cancer. (Mol Cancer Res 2009;7(1):142-55)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available