4.6 Article

Identification and genetic mapping of a recessive gene for resistance to stripe rust in wheat line LM168-1

Journal

MOLECULAR BREEDING
Volume 33, Issue 3, Pages 601-609

Publisher

SPRINGER
DOI: 10.1007/s11032-013-9977-y

Keywords

Wheat resistance gene; Stripe rust; Simple sequence repeat (SSR); Resistance gene analog polymorphism (RGAP); Target region amplification polymorphism (TRAP)

Funding

  1. National Basic Research Program of China (973 Program) [2011CB100100]
  2. National Transgenic Major Program [2011ZX08002-001]
  3. National Basic Research Special Program of China [2010CB134402]

Ask authors/readers for more resources

Stripe rust (or yellow rust), caused by the fungus Puccinia striiformis f. sp. tritici (Pst), is one of the most important foliar diseases of wheat. Characterization and utilization of novel resistant genes is the most effective, economic and environmentally friendly approach to controlling the disease. Wheat line LM168-1, which was derived from a cross between common wheat Chuannong 16 and Milan, has good adult-plant resistance to stripe rust, based on field tests over several years. To elucidate the genetic basis of resistance, LM168-1 was crossed with susceptible variety SY95-71. Parents and F1, F2, BC1 and F2:3 progenies were tested in 2009-2011 in a field inoculated with the predominant races of Pst in China. The genetic analysis showed that resistance to stripe rust in LM168-1 was controlled by a single recessive gene, temporarily designated yrLM168. Simple sequence repeat (SSR), resistance gene analog polymorphism (RGAP) and target region amplification polymorphism (TRAP) techniques were used to identify molecular markers linked to the resistance locus. Finally, a linkage group consisting of two SSR, four RGAP and five TRAP markers was constructed for yrLM168 with 102 F2 plants. The closest markers R1 and R2 flanked the resistance gene locus at 2.4 and 2.4 cM, respectively. Furthermore, two SSR markers Xwmc59 and Xwmc145 assigned the gene to chromosome 6A. Because yrLM168 confers high-level resistance to the predominant races of Pst in China, it should be useful in stripe rust resistance breeding programs. The closely linked markers can be used for rapidly transferring yrLM168 to wheat breeding populations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available