4.6 Article

QTL mapping of stripe, leaf and stem rust resistance genes in a Kariega x Avocet S doubled haploid wheat population

Journal

MOLECULAR BREEDING
Volume 27, Issue 2, Pages 259-270

Publisher

SPRINGER
DOI: 10.1007/s11032-010-9428-y

Keywords

Adult plant resistance; QTL mapping; Stripe/leaf/stem rust; Triticum aestivum

Funding

  1. South African Winter Cereal Trust
  2. National Research Foundation

Ask authors/readers for more resources

Adult plant resistance to stripe (yellow) rust in the wheat cultivar Kariega has previously been ascribed to a major quantitative trait locus (QTL) on each of chromosomes 2B and 7D, along with a number of minor QTL. We have extended both the size of the cv. Kariega x cv. Avocet S mapping population, and the marker coverage within it, by assembling a set of Diversity Array Technology (DArT) markers. This has allowed for the analysis of the genetic basis of the adult plant and seedling resistances to stripe, leaf and stem rust present in the two mapping population parents. The stripe rust reactions of the segregating material were assessed in both field (three scoring dates) and greenhouse experiments. The chromosome 2B QTL became more important than the Lr34/Yr18 complex on chromosome 7D as the plants aged. As the infection progressed, the two QTL explained an increasing proportion of the variance for percentage leaf area infected. The cv. Kariega allele at the minor chromosome 4A QTL had a consistent effect on the severity of stripe rust infection and the overall plant reaction at the earlier scoring dates, but lost importance as the disease progressed. Several rust resistances were detected using an improved greenhouse-based test.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available