4.6 Article

Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR

Journal

MOLECULAR BREEDING
Volume 23, Issue 4, Pages 607-616

Publisher

SPRINGER
DOI: 10.1007/s11032-009-9259-x

Keywords

Reference genes; Coffee; Drought stress; Development; Gene expression; Real-time PCR; qPCR

Funding

  1. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico CNPQ [310254/2007-8]
  2. Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro-FAPERJ [E-26/102.861/2008]
  3. International Foundation of Science [C/3962-1]
  4. International Basic Science Program [IBSP/UNESCO-3-BR-28]

Ask authors/readers for more resources

Accuracy in quantitative real-time polymerase chain reaction (qPCR) requires the use of stable endogenous controls. Normalization with multiple reference genes is the gold standard, but their identification is a laborious task, especially in species with limited sequence information. Coffee (Coffea ssp.) is an important agricultural commodity and, due to its economic relevance, is the subject of increasing research in genetics and biotechnology, in which gene expression analysis is one of the most important fields. Notwithstanding, relatively few works have focused on the analysis of gene expression in coffee. Moreover, most of these works have used less accurate techniques such as northern blot assays instead of more accurate techniques (e.g., qPCR) that have already been extensively used in other plant species. Aiming to boost the use of qPCR in studies of gene expression in coffee, we uncovered reference genes to be used in a number of different experimental conditions. Using two distinct algorithms implemented by geNorm and Norm Finder, we evaluated a total of eight candidate reference genes (psaB, PP2A, AP47, S24, GAPDH, rpl39, UBQ10, and UBI9) in four different experimental sets (control versus drought-stressed leaves, control versus drought-stressed roots, leaves of three different coffee cultivars, and four different coffee organs). The most suitable combination of reference genes was indicated in each experimental set for use as internal control for reliable qPCR data normalization. This study also provides useful guidelines for reference gene selection for researchers working with coffee plant samples under conditions other than those tested here.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available