4.1 Article

Molecular basis for fungicidal action of neothyonidioside, a triterpene glycoside from the sea cucumber, Australostichopus mollis

Journal

MOLECULAR BIOSYSTEMS
Volume 8, Issue 3, Pages 902-912

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2mb05426d

Keywords

-

Funding

  1. Maurice Wilkins Center of the University of Auckland
  2. Foundation for Research Science and Technology
  3. ESR Ltd.

Ask authors/readers for more resources

Neothyonidioside is a triterpene glycoside (TG) isolated from the sea cucumber, Australostichopus mollis, that is potently cytotoxic to S. cerevisiae, but does not permeabilize cellular membranes. We mutagenized S. cerevisiae and isolated a neothionidioside-resistant (neo(R)) strain. Using synthetic genetic array mapping and sequencing, we identified NCP1 as the resistance locus. Quantitative HPLC revealed that neo(R)/ncp1 mutants have reduced ergosterol content. Ergosterol added to growth media reversed toxicity, demonstrating that neothionidioside binds directly to ergosterol, similar to the polyene natamycin. Ergosterol synthesis inhibitors ketoconazole and atorvastatin conferred resistance to neothionidioside in a dose-dependent manner showing that a threshold ergosterol concentration is required for toxicity. A genome-wide screen of deletion mutants against neothionidioside revealed hypersensitivity of many of the component genes in the ESCRT complexes relating to multivesicular body formation. Confocal microscopy of cells stained with a vital dye showed blockage at this step. Thus, we propose neothionidioside may affect membrane curvature and fusion capability in the endosome-vacuole pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available