4.1 Article

Guanine quadruplex DNA structure restricts methylation of CpG dinucleotides genome-wide

Journal

MOLECULAR BIOSYSTEMS
Volume 6, Issue 12, Pages 2439-2447

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0mb00009d

Keywords

-

Funding

  1. CSIR [SIP 006]
  2. Department of Science Technology [DST/SJF/LS-03]
  3. ICMR
  4. UGC

Ask authors/readers for more resources

Cytosine methylation in mammals is important for epigenetic control of the transcriptome. Although altered methylation is frequently encountered in disease situations, particularly cancer, the relationship between genome-wide methylation and DNA structure is poorly understood. It is now evident that alternative DNA forms are functionally relevant in replication, recombination and transcription. Herein, we researched the role of alternative DNA structure in cytosine methylation using quadruplex DNA as a case study. Our findings from analysis of 2.1 million CpGs in humans, across 12 tissues from the Human Epigenome Project (HEP), revealed a striking correlation within each tissue: CpGs with low methylation were enriched (P = 5.24E(-20)) whereas CpGs with high methylation were relatively depleted (P = 9.28E-(15)), within quadruplex-forming regions. This was further substantiated on considering 1.07E(8) methylcytosines from genome-wide sequencing within embryonic stem cells and differentiated fibroblasts. To further test the predictions we experimentally determined methylation in > 600 000 CpGs across 18 individuals using bisulfite mapping and found significantly low methylation of CpGs within quadruplex-forming regions (P = 1.36E(-08)). Together, these suggest the role of guanine-quadruplexes in CpG methylation and directly impact our understanding of the inter-relationship between DNA conformation and global cytosine methylation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available