4.1 Article

On the selective detection of duplex deoxyribonucleic acids by 2,1,3-benzothiadiazole fluorophores

Journal

MOLECULAR BIOSYSTEMS
Volume 6, Issue 6, Pages 967-975

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b919155k

Keywords

-

Funding

  1. CAPES
  2. CNPq
  3. INCTCatal.
  4. FAPERGS

Ask authors/readers for more resources

A series of 4,7-pi-extended 2,1,3-benzothiadiazoles (BTDs) with different molecular architectures, in particular, the organic dyes based on the 4-(arylethynyl)-7-(4-methoxy)-2,1,3-benzothiazole skeleton, can be used at very low concentrations (down to 10 mu M) to detect DNA at 1 ppm in phosphate buffer solutions. Upon binding to DNA, these dyes showed an exponential increase in the fluorescence intensity (hyperchromic effect) and a red shift (1-5 nm) in the long-wavelength emission maxima. Pre-steady state kinetic experiments (stopped-flow) demonstrated the fast dye interaction with the biomacromolecules of DNA with an increase in fluorescence, especially with non-symmetrical BTDs containing an ethynyl spacer. An intercalation model could be proposed based on the photophysical properties, X-ray analysis, and theoretical calculations (ab initio). In this model, the intercalation occurs on the ethynyl side of the BTD, and as a consequence, the PhOMe portion is free to perform the ICT process with the BTD core and stabilizes it in the excited state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available