4.1 Review

Supervised learning with decision tree-based methods in computational and systems biology

Journal

MOLECULAR BIOSYSTEMS
Volume 5, Issue 12, Pages 1593-1605

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b907946g

Keywords

-

Funding

  1. Belgian State, Science Policy Office
  2. European Network of Excellence PASCAL2

Ask authors/readers for more resources

At the intersection between artificial intelligence and statistics, supervised learning allows algorithms to automatically build predictive models from just observations of a system. During the last twenty years, supervised learning has been a tool of choice to analyze the always increasing and complexifying data generated in the context of molecular biology, with successful applications in genome annotation, function prediction, or biomarker discovery. Among supervised learning methods, decision tree-based methods stand out as non parametric methods that have the unique feature of combining interpretability, efficiency, and, when used in ensembles of trees, excellent accuracy. The goal of this paper is to provide an accessible and comprehensive introduction to this class of methods. The first part of the review is devoted to an intuitive but complete description of decision tree-based methods and a discussion of their strengths and limitations with respect to other supervised learning methods. The second part of the review provides a survey of their applications in the context of computational and systems biology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available