4.5 Article

Heterologous expression of rice calnexin (OsCNX) confers drought tolerance in Nicotiana tabacum

Journal

MOLECULAR BIOLOGY REPORTS
Volume 40, Issue 9, Pages 5451-5464

Publisher

SPRINGER
DOI: 10.1007/s11033-013-2643-y

Keywords

Ca2+ signaling; Calnexin; Abiotic stress; Draught; ER stress

Funding

  1. Department of Biotechnology, Government of India

Ask authors/readers for more resources

Calnexin (CNX) is an integral membrane protein of endoplasmic reticulum (ER) and is a critical component of ER quality control machinery. It acts as a chaperone and ensures proper folding of newly synthesised glycoproteins. CNX shares a considerable homology with its luminal counterpart calreticulin (CRT). Together, they constitute CNX/CRT cycle which is imperative for proper folding of nascent proteins. CNX deficient organisms develop severe complications because of improper folding of proteins and consequently ER stress. CNX maintains calcium homeostasis by binding to the Ca2+ which is a central node in various signaling pathways. Phosphorylation of cytoplasmic tail of CNX controls the sarco endoplasmic reticulum calcium ATPase and thus the movement of Ca2+ in and out of its store-house, i.e. ER. Our studies on Oryza sativa CNX (OsCNX) reveal constitutive expression at various developmental stages and various tissues, thereby proving its requirement throughout the plant development. Further, its expression under various stress conditions gives an insight of the crosstalk existing between ER stress and abiotic stress signaling. This was confirmed by heterologous expression of OsCNX (OsCNX-HE) in tobacco and the OsCNX-HE lines were observed to exhibit better germination under mannitol stress and survival under dehydration stress conditions. The dehydration tolerance conferred by OsCNX appears to be ABA-dependent pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available