4.5 Article

Sterol glycosyltransferases-identification of members of gene family and their role in stress in Withania somnifera

Journal

MOLECULAR BIOLOGY REPORTS
Volume 39, Issue 10, Pages 9755-9764

Publisher

SPRINGER
DOI: 10.1007/s11033-012-1841-3

Keywords

Cold stress; Glycosyltransferases; Heat stress; Medicinal plants; Saponins; Sterols

Funding

  1. Council of Scientific and Industrial Research, Government of India under New Millennium Indian Technology Leadership Initiative

Ask authors/readers for more resources

Sterol glycosyltransferases (SGTs) catalyze the transfer of sugar molecules to diverse sterol molecules, leading to a change in their participation in cellular metabolism. Withania somnifera is a medicinal plant rich in sterols, sterol glycosides and steroidal lactones. Sterols and their modified counterparts are medicinally important and play a role in adaptation of the plant to stress conditions. We have identified 3 members of SGT gene family through RACE (Rapid Amplification of cDNA Ends) in addition to sgtl1 reported earlier. The amino acid sequence deduced from the ORF's showed homology (45-67 %) to the reported plant SGTs. The expression of the genes was differentially modulated in different organs in W. somnifera and in response to external stimuli. Salicylic acid and methyl jasmonate treatments showed up to 10 fold increase in the expression of sgt genes suggesting their role in defense. The level of expression increased in heat and cold stress indicating the role of sterol modifications in abiotic stress. One of the members, was expressed in E. coli and the enzyme assay showed that the crude enzyme glycosylated stigmasterol. W. somnifera expresses a family of sgt genes and there is a functional recruitment of these genes under stress conditions. The genes which are involved in sterol modification are important in view of medicinal value and understanding stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available