4.4 Article

Tracking yeast pheromone receptor Ste2 endocytosis using fluorogen-activating protein tagging

Journal

MOLECULAR BIOLOGY OF THE CELL
Volume 29, Issue 22, Pages 2720-2736

Publisher

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E18-07-0424

Keywords

-

Categories

Funding

  1. Erwin Schroedinger Fellowship from the Austrian Science Fund [J3787-B21]
  2. Marie Sklodowska-Curie Individual Fellowship GAND35 from the European Commission
  3. National Institutes of Health (NIH) [GM21841]
  4. NIH [OD018136]
  5. Austrian Science Fund (FWF) [J3787] Funding Source: Austrian Science Fund (FWF)

Ask authors/readers for more resources

To observe internalization of the yeast pheromone receptor Ste2 by fluorescence microscopy in live cells in real time, we visualized only those molecules present at the cell surface at the time of agonist engagement (rather than the total cellular pool) by tagging this receptor at its N-terminus with an exocellular fluorogen-activating protein (FAP). A FAP is a single-chain antibody engineered to bind tightly a nonfluorescent, cell-impermeable dye (fluorogen), thereby generating a fluorescent complex. The utility of FAP tagging to study trafficking of integral membrane proteins in yeast, which possesses a cell wall, had not been examined previously. A diverse set of signal peptides and propeptide sequences were explored to maximize expression. Maintenance of the optimal FAP-Ste2 chimera intact required deletion of two, paralogous, glycosylphosphatidylinositol (GPI)-anchored extracellular aspartyl proteases (Yps1 and Mkc7). FAP-Ste2 exhibited a much brighter and distinct plasma membrane signal than Ste2-GFP or Ste2-mCherry yet behaved quite similarly. Using FAP-Ste2, new information was obtained about the mechanism of its internalization, including novel insights about the roles of the cargo-selective endocytic adaptors Ldb19/Art1, Rod1/Art4, and Rog3/Art7.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available