4.4 Article

An aspartyl cathepsin, CTH3, is essential for proprotein processing during secretory granule maturation in Tetrahymena thermophila

Journal

MOLECULAR BIOLOGY OF THE CELL
Volume 25, Issue 16, Pages 2444-2460

Publisher

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E14-03-0833

Keywords

-

Categories

Funding

  1. National Science Foundation [MCB-1051985]

Ask authors/readers for more resources

In Tetrahymena thermophila, peptides secreted via dense-core granules, called mucocysts, are generated by proprotein processing. We used expression profiling to identify candidate processing enzymes, which localized as cyan fluorescent protein fusions to mucocysts. Of note, the aspartyl cathepsin Cth3p plays a key role in mucocyst-based secretion, since knockdown of this gene blocked proteolytic maturation of the entire set of mucocyst proproteins and dramatically reduced mucocyst accumulation. The activity of Cth3p was eliminated by mutation of two predicted active-site mutations, and overexpression of the wildtype gene, but not the catalytic-site mutant, partially rescued a Mendelian mutant defective in mucocyst proprotein processing. Our results provide the first direct evidence for the role of proprotein processing in this system. Of interest, both localization and the CTH3 disruption phenotype suggest that the enzyme provides non-mucocyst-related functions. Phylogenetic analysis of the T. thermophila cathepsins, combined with prior work on the role of sortilin receptors in mucocyst biogenesis, suggests that repurposing of lysosomal enzymes was an important step in the evolution of secretory granules in ciliates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available