4.4 Article

SNARE complexes of different composition jointly mediate membrane fusion in Arabidopsis cytokinesis

Journal

MOLECULAR BIOLOGY OF THE CELL
Volume 24, Issue 10, Pages 1593-1601

Publisher

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E13-02-0074

Keywords

-

Categories

Funding

  1. Deutsche Forschungsgemeinschaft [Ju 179/12-1]

Ask authors/readers for more resources

Membrane fusion is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes. Although membrane fusion is required for separating daughter cells in eukaryotic cytokinesis, the SNARE complexes involved are not known. In plants, membrane vesicles targeted to the cell division plane fuse with one another to form the partitioning membrane, progressing from the center to the periphery of the cell. In Arabidopsis, the cytokinesis-specific Qa-SNARE KNOLLE interacts with two other Q-SNAREs, SNAP33 and novel plant-specific SNARE 11 (NPSN11), whose roles in cytokinesis are not clear. Here we show by coimmunoprecipitation that KNOLLE forms two SNARE complexes that differ in composition. One complex is modeled on the trimeric plasma membrane type of SNARE complex and includes, in addition to KNOLLE, the promiscuous Qb,c-SNARE SNAP33 and the R-SNARE vesicle-associated membrane protein (VAMP) 721,722, also involved in innate immunity. In contrast, the other KNOLLE-containing complex is tetrameric and includes Qb-SNARE NPSN11, Qc-SNARE SYP71, and VAMP721,722. Elimination of only one or the other type of KNOLLE complex by mutation, including the double mutant npsn11 syp71, causes a mild or no cytokinesis defect. In contrast, the two double mutants snap33 npsn11 and snap33 syp71 eliminate both types of KNOLLE complexes and display knolle-like cytokinesis defects. Thus the two distinct types of KNOLLE complexes appear to jointly mediate membrane fusion in Arabidopsis cytokinesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available