4.4 Article

SNAP-23 regulates phagosome formation and maturation in macrophages

Journal

MOLECULAR BIOLOGY OF THE CELL
Volume 23, Issue 24, Pages 4849-4863

Publisher

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E12-01-0069

Keywords

-

Categories

Funding

  1. Japan Society for the Promotion of Science [22570189]
  2. Grants-in-Aid for Scientific Research [24650266, 21116002, 22570189] Funding Source: KAKEN

Ask authors/readers for more resources

Synaptosomal associated protein of 23 kDa (SNAP-23), a plasma membrane-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE), has been implicated in phagocytosis by macrophages. For elucidation of its precise role in this process, a macrophage line overexpressing monomeric Venus-tagged SNAP-23 was established. These cells showed enhanced Fc receptor-mediated phagocytosis. Detailed analyses of each process of phagocytosis revealed a marked increase in the production of reactive oxygen species within phagosomes. Also, enhanced accumulation of a lysotropic dye, as well as augmented quenching of a pH-sensitive fluorophore were observed. Analyses of isolated phagosomes indicated the critical role of SNAP-23 in the functional recruitment of the NADPH oxidase complex and vacuolar-type H+-ATPase to phagosomes. The data from the overexpression experiments were confirmed by SNAP-23 knockdown, which demonstrated a significant delay in phagosome maturation and a reduction in uptake activity. Finally, for analyzing whether phagosomal SNAP-23 entails a structural change in the protein, an intramolecular Forster resonance energy transfer (FRET) probe was constructed, in which the distance within a TagGFP2-TagRFP was altered upon close approximation of the N-termini of its two SNARE motifs. FRET efficiency on phagosomes was markedly enhanced only when VAMP7, a lysosomal SNARE, was coexpressed. Taken together, our results strongly suggest the involvement of SNAP-23 in both phagosome formation and maturation in macrophages, presumably by mediating SNARE-based membrane traffic.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available