4.4 Article

Novel Role of ATPase Subunit C Targeting Peptides Beyond Mitochondrial Protein Import

Journal

MOLECULAR BIOLOGY OF THE CELL
Volume 21, Issue 1, Pages 131-139

Publisher

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E09-06-0483

Keywords

-

Categories

Funding

  1. National Institutes of Health/National Institute of Neurological Disorders and Stroke and Muscular Dystrophy Association
  2. Spanish Fondo de Investigacion Sanitaria [FIS PI07/0347]
  3. Spanish Ministry of Education and Science
  4. CIBERER

Ask authors/readers for more resources

In mammals, subunit c of the F1F0-ATP synthase has three isoforms (P1, P2, and P3). These isoforms differ by their cleavable mitochondrial targeting peptides, whereas the mature peptides are identical. To investigate this apparent genetic redundancy, we knocked down each of the three subunit c isoform by RNA interference in HeLa cells. Silencing any of the subunit c isoforms individually resulted in an ATP synthesis defect, indicating that these isoforms are not functionally redundant. We found that subunit c knockdown impaired the structure and function of the mitochondrial respiratory chain. In particular, P2 silencing caused defective cytochrome oxidase assembly and function. Because the expression of exogenous P1 or P2 was able to rescue the respective silencing phenotypes, but the two isoforms were unable to cross-complement, we hypothesized that their functional specificity resided in their targeting peptides. In fact, the expression of P1 and P2 targeting peptides fused to GFP variants rescued the ATP synthesis and respiratory chain defects in the silenced cells. Our results demonstrate that the subunit c isoforms are nonredundant, because they differ functionally by their targeting peptides, which, in addition to mediating mitochondrial protein import, play a yet undiscovered role in respiratory chain maintenance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available